If it's not what You are looking for type in the equation solver your own equation and let us solve it.
82-202t+16t^2=0
a = 16; b = -202; c = +82;
Δ = b2-4ac
Δ = -2022-4·16·82
Δ = 35556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35556}=\sqrt{4*8889}=\sqrt{4}*\sqrt{8889}=2\sqrt{8889}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-202)-2\sqrt{8889}}{2*16}=\frac{202-2\sqrt{8889}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-202)+2\sqrt{8889}}{2*16}=\frac{202+2\sqrt{8889}}{32} $
| 16t^2+21t-255=0 | | 450=750-70p | | 8-32x=-32 | | -1(x+-1)+5=2(x+3)-5 | | 14(t-3)+7t=7(3t+4)-11 | | 9y-9=6y-12 | | 3=1+9t-5t^2 | | 3=1+9t-5T*2 | | 3=1+9t-5T | | 3t-2*3+2t+3*2=t+7*6 | | (2x+9)(8-x)=0 | | 1/5(3x-0,5)-1/30=x/5 | | 1,2x2-0,6x-10,2=0 | | (c)/(20)-41=59 | | Xx2-232=2400 | | 94=(y)/(4)-18 | | 31+x=36 | | 9x+6x+58+87-1=90 | | x+x+120+120+x/2=360 | | y^2+0.4y=0.84 | | 4z+z2+12=0 | | (X+.30x)=360000 | | 15x-42=8x | | 4x²+5x=0 | | 3x(×-50)=7x+80 | | X+.3x=360000 | | 4/5x=-10/3x^2 | | x+(x*0.17)=738000 | | 8=t | | 32=0.8x | | (4x-6)/(3x-9)=3 | | 5x-15/9=25/3 |